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Abstract

Regulators are increasingly getting concerned with the power of large online plat-

forms to bias consumer recommendations. In light of these concerns, I study mecha-

nisms to give consumers control over recommendation algorithms as a potential avenue

for regulation using an online experiment. I show that in the experimental setting, an

algorithm that ranks items by estimated consumer surplus leads to better outcomes for

the subjects than an algorithm that weighs consumer surplus and a cost-minimization

objective. When faced with a costly choice between two recommendation algorithms,

subjects have a positive willingness-to-pay for a better recommendation algorithm.

Subjects however underestimate the potential gain from the better recommendation

algorithm. For a $1 higher estimated gain from having the better algorithm, subjects

willingness-to-pay increases by $0.07 on average. These findings suggest, that giving

consumers power over recommendation algorithms to curtail potential abuse is not

straightforward. It may however be a viable business for platforms to themselves to

offer improved recommendation algorithms to consumers for a fee.
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1 Introduction

Choices on online platforms are often too numerous for consumers to compare all relevant

products. When consumers search products, platforms therefore employ recommendation

systems. Recommendation systems shape which products a consumer sees, and in which

order they are searched (Ursu, 2018). With the design of its recommendation system, a

platforms affect both consumer choice as well as the competition among firms (Armstrong,

Vickers and Zhou, 2009). While these algorithms can be used to help consumers, platforms

can also exploit the consumers’ reliance on recommendations (Peitz, 2023, Lam, 2021).

Regulators have in the recent past have been particularly concerned with self-preferencing,

i.e. the power of hybrid platforms to inflate the ratings of items that the platform sells it-

self. So far, the answer from European regulators has been to ban self-preferencing for large

platforms through the Digital Markets Act (Digital Markets Act, 2022). However, this regu-

lation maybe difficult to enforce, difficult to comply with1 and leaves other consumer-welfare

related concerns, such as price discrimination through recommendations, unaddressed.

In light of these concerns, I study an alternative proposal for regulation, which would

enable the consumer to choose between different recommendation systems. In recent times

most prominently discussed by Fukuyama and coauthors (Fukuyama, Richman, Goel, Katz,

Melamed and Schaake, 2020) as ”middleware”, the concept of enabling consumers to have

more control over their interaction with online services is not new2. In the context of

recommendation systems, Resnick and Varian (1997) envisioned a future, where e-commerce

stores and recommendation systems would be two separate entities, owned and operated by

two different firms. The e-commerce stores would be competing intensely with each other,

and the consumer could use the recommendation system that they perceive to best fit their

1Given that the past purchase data on large platforms was generated in a setting with potentially biased
(or self-preferencing) algorithms, it may be difficult to generate truly unbiased rankings, even when using
an unbiased algorithm. How to de-bias data for recommendation applications is an active area of research
(Chen, Dong, Qiu, He, Xin, Chen, Lin and Yang, 2021, Lin, Liu, Pan and Ming, 2021).

2This paper also relates to recent contributions of Bergemann, Cremer, Dinielli, Groh, Heidhues, Schafer,
Schnitzer, Morton, Seim and Sullivan (2023), Esber, Kominers, Kornfeld, Belsky, Chitnis, Chmielinski,
Deighton, Eliot, Rossini, Searls, Shah and Williams (2024) and Posner and Weyl (2018) that consider ways
for consumers to better govern and make use of their personal data.
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needs. Nowadays, e-commerce platforms such as Amazon or content platforms like Spotify

or Netflix come bundled with their own recommendation system, and the consumer does not

have an alternative recommendation system to choose from, unless they leave the platform.

This leads to the question whether it would be a promising policy idea to request large

platforms to let consumers choose from multiple recommendation systems. Apart from how

the incentives for platforms might change, for such a policy to be effective it is necessary

that consumers are able to judge different recommendation systems well.

With this project, I study the question how subjects use and judge recommendation systems

in a stylized laboratory setting. In my experiment, I first elicit the subjects risk aversion.

I use this elicited risk aversion to create and order lists of three-outcome lotteries with two

different algorithms: one that selects and orders lotteries based on the subjects expected

utility (expected utility algorithm), and one that weighs the expected utility of the subject

and the objective of the platform (platform algorithm). I then let subjects make choices

from lists of lotteries that have been selected and ordered by these two algorithms. After

10 rounds of the choice task with each algorithm, I elicit their willingness to pay for either

algorithm - the subject gets to change the probability with which they are going to face

either the expected utility or the platform algorithm for the last set of 10 choice tasks.

I find that the facing the different algorithms substantially changes the choices and outcomes

of subjects. when faced with the platform algorithm, subjects choose lotteries with lower

expected utility, lower expected value and a higher rank on average. Regarding willingness-

to-pay, I find that subjects have on average a positive willingness-to-pay for the expected

utility algorithm, but that there is substantial heterogeneity. Subjects that have a higher

expected gain from using the expected utility algorithm have a higher willingness-to-pay,

however it increases only by $0.07 for an additional $1 of estimated gain. This indicates

that subjects underestimate the potential benefit of having the expected utility algorithm.

However, given the scale

I contribute to a growing empirical literature on rankings and platform recommendation

systems (Donelly, Kanodia and Morozov, 2023; Zhang, Ferreira, Matos and Belo, 2021;
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Farronato, Fradkin and MacKay, 2023; Reimers and Waldfogel, 2023; Lee and Musolff,

2021; Greminger, 2022; Greminger, 2023; Kaye, 2024; Ghose, Ipeirotis and Li, 2014; De los

Santos and Koulayev, 2017; Derakhshan, Golrezaei, Manshadi and Mirrokni, 2022). Ursu

(2018) studies the effect of rankings on consumer choices using experimental data from

the online travel platform Expedia. A subset of consumers looking for hotels were shown

a random ranking, while the others were shown a ranking by ”relevance” according to

Expedia. The subjects were not aware that their rankings were created differently. She finds

that rankings affect consumer search, but do not affect purchase decisions after controlling

for search. Donelly et al. (2023) investigate the effects of recommendation systems using

an experiment on the furniture shopping platform Wayfair. The experiment randomly

assigned shoppers to see either personalized or non-personalized rankings of products. They

find that personalized rankings induce more active consumer search and increase purchase

probabilities. Importantly however, the experiment was conducted unbeknownst to the

user - the users may have expected their product search results to be personalized based on

their experience on similar E-commerce websites, or they might have changed their search

behavior if they had known that their rankings are not personalized. Zhang et al. (2021)

run an experiment on a Video-on-demand system. They randomize both the slot (i.e. the

ranking of the movie, how saliently it is presented) and the price of the movie. They find

that movies that are prominently displayed have less price elastic demand. Similarly to

the previous studies, subjects are not aware that the algorithm has changed for them as

compared to when they used the same service before the researchers intervention. Farronato

et al. (2023) document that products of Amazon brands are more prominently displayed

than other products. They also show that steering can be potentially very effective, since

in 72.1% of searches consumers stay on the first page of search results.

This paper relates to the emergent experimental literature on platform recommendation

systems. Fong, Natan and Pantle (2024) conduct an experiment in order to disentangle po-

sition specific search costs from beliefs about the recommendation (or ranking) algorithm.

They find that both mechanisms are important, and that not accounting for beliefs leads to

overestimating position-specific search costs. Lastly, they also show that consumers learn
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about algorithms in experimental settings where the recommendation algorithm changes,

and they are neither informed about the change nor the algorithms. Their findings are im-

portant for the simulation of counterfactual recommendation procedures, as overestimated

search costs lead to overestimating gains from potentially better algorithms. Instead, I elicit

preferences for different algorithms directly.

Regarding the literature on recommendation algorithms beyond their use as ranking tools on

platforms, I relate to Chen, Wu and Zhong (2023), from whom I borrow the three outcome

lottery design. Chen et al. (2023) study how subjects make binary choices between three

outcome lotteries when they can use recommendation systems. They find, that subjects tend

to follow the recommendations, and that they make better and faster decisions when they

have access to recommendations. They also document that subjects are willing to pay a fee

to have access to the recommendations. To generate recommendations, they use algorithms

that are employed in real-life recommendation systems, such as collaborative filtering. In

contrast to their research, I do not consider technical intricacies of different recommendation

algorithms. I start from the view that platforms use accurate utility estimates for their

recommendations, and then investigate how consumers choose from ordered lists, rather

than how they make a binary choice. Their finding that consumers are willing to pay

for recommendations rather than not having recommendations is an important result, and

and I will be able to contrast this with my findings on whether subjects are willing to

pay for a recommendation system that is aligned with their preferences rather than one

that is not aligned. Caplin, Dean and Martin (2011) study how complexity affects choices

from lists. They show that many choices from lists are consistent with sequential search,

which is corroborates the steering power of rankings. While I will not vary the complexity

of choices in my experiment, the experimental setting could be easily amended to vary

complexity by increasing the number of lottery choices. Kaye (2024) studies outcomes of

firms and consumers with recommendation algorithms where firms price endogenously. He

finds that personalization improves the matches of consumer to products, but it implies

that firms are matched with consumers that have more inelastic demand for their offering.

Facing this new demand, firms find it optimal to increase their price, negating the welfare
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benefits that consumers derive from the improved matches. Importantly for my experiment,

he emphasizes the role of consumer expectations about recommendation algorithms. In

experiments on platforms like Expedia, consumers may expect the items to be ordered by

a recommendation system, and may infer something about unobserved product attributes

from the items position in a list, even if the recommendation system has been deactivated

for the user as part of an experiment. I therefore emphasize to subjects in the experiment,

that the items on the lists that they are able to choose from are selected and ordered by

different algorithms.

I also relate to an active theoretical literature on biased intermediation on platforms (Hagiu

and Jullien, 2011; Hagiu and Jullien, 2014; Armstrong et al., 2009; Armstrong and Zhou,

2011; Reimers and Waldfogel, 2023; de Cornière and Taylor (2019); Bergemann and Bonatti

(2023)). Theoretical contributions highlight consumer heterogeneity and the role of infor-

mation in platform intermediation. de Cornière and Taylor (2019) outline a model where

recommendations by the intermediary can either harm or benefit consumers, depending

on whether the intermediaries’ and the consumers’ interests are conflicting or congruent.

Heidhues, Köster and Kőszegi (2023) focus on how recommendations can affect consumers

when they make mistakes. Mistakes in this model fall into two categories - either the con-

sumer purchases something that they should not have purchased, or they do not purchase

something that they should have purchased. However, this model abstracts from consumer

search. Bourreau and Gaudin (2022) study biased intermediation on streaming platforms.

In this setting, the user does not pay per song or movie they stream, but the platform bears

a marginal cost for each stream. The platform chooses which items to recommend, and

the subscription price. They show that the platform optimally steers consumers to items

with lower marginal costs. In the model of Bergemann and Bonatti (2023), the platform

has an informational advantage over the user - the platform knows the user-item match

specific utility exactly, while the user is uncertain. In this setting, the platform matches

products and users with targeted ads, and monetizes by charging sellers for the advertising.

Reimers and Waldfogel (2023) develop a discrete choice framework that sheds light on how

biased intermediation can be studied without data from inside the platform. They trace out
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the a welfare frontier, where total welfare is divided by between buyers and sellers on the

platform, and label departures from this welfare frontier as biased intermediation. Using

simulations, they illustrate that regressing rank on observable product characteristics as well

as a dummy that equals to 1 if a product is sold by the platform (or ”platform-preferred”)

does not produce reliable evidence for or against biased intermediation.

While I do not study biased intermediation theoretically, my experiment relies on these

contributions in important ways. Firstly, as in de Cornière and Taylor (2019), I study a

setting where alignment of interest between the user and the platform vary from user to

user. In the experiment, users that are risk neutral or close to risk neutral have completely

conflicting interests with the platform, while the interests of either very risk averse or

risk seeking consumers are more aligned. I will be able to study if consumers are more

or less likely to ”make mistakes” or choose options the lead to a lower expected utility

based on certain characteristics, as in Heidhues et al. (2023), and even though I abstract

from ”mistake-based” steering, the experimental setting could be extended to include such

alternative steering algorithms. As in Bourreau and Gaudin (2022) I study a setting where

user choose items at no cost. The choice between different recommendation systems, where

the recommended items are free for the user is similar to platform competition between

streaming services. For the design of the algorithms in the experiment, I rely extensively

on Reimers and Waldfogel (2023). In my conceptual framework, I use their simple logit

formulation of rank-dependent expected utility, and I rely on their results on consumer- and

seller optimal algorithms for the design of my experiment. Lastly, mirroring Bergemann and

Bonatti (2023), I assume that the platform knows the users preferences, and can therefore

compute the (rank-independent) utility of each choice for each user.

The paper proceeds as follows. In Section 2, I describe a conceptual framework motivating

the different recommendation algorithms used in the experiment. Section 3 describes the

design of the experiment. In section 4, I show the results. Section 5 concludes.
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2 Conceptual Framework

Just as consumers on e-commerce platforms, subjects in my experiment will be faced with

lists of items. While in the platform case, these items are likely to be products (or songs or

movies), in the case of my experiment, they are three-outcome lotteries. The outcomes of the

lotteries are x1 = $0, x2 = $5 and x3 = $10, and I denote the corresponding probabilities as

p1, p2 and p3. I follow Reimers andWaldfogel (2023) logit approach in modeling the subject’s

utility. The subject chooses among L lotteries1 based on the lotteries characteristics, and

its ranking in the list rj. I model the subject’s utility of choosing a lottery j ranked at rj

as:

uij = δij + γirj + ξj + ϵij (1)

where γi denotes the user-specific effect of rank on utility, ξj is are unobserved lottery

attributes (for example, lotteries where the probability of one outcome is equal to 0 might

be more easy to understand for subjects, leading to them being chosen more frequently), and

ϵij is an extreme-value error. Lastly, δij denotes the rank-independent component of utility,

which I choose to model using a constant relative risk aversion (CRRA) utility function:

δij =


∑3

k=1 p(ck)
c
1−ωi
k

1−ωi
if ω ̸= 1∑3

k=1 p(ck)ln(ck) if ω = 1

The variable k indexes the three different outcomes (ck) of lottery j, and ωi is the individual-

specific risk aversion. Given that there is no outside option in the experimental setting, the

choice probability for a lottery j ranked at rj can be computed as:

Pij =
evij∑
j∈J e

vij

with vij = δij + γirj + ξj. The ranking of a lottery affects the subjects utility of choosing a

lottery, and therefore also the probability that the lottery will be chosen.

1Contrary to most demand modeling approaches, there is no outside option in the experiment.
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2.1 Ranking algorithms

In the experiment, subjects face two different algorithms. The first algorithm, which I will

call the expected utility algorithm, is fully aligned with the interests of the subjects and

orders lotteries. The other algorithm, which I will call the platform algorithm, weighs con-

sumer utility and the expected cost of providing a lottery to a subject.

Expected Utility Algorithm:

The expected utility algorithm ranks lotteries by the following index:

Iij =
3∑

k=1

p(ck)
c1−ωi
k

1− ωi︸ ︷︷ ︸
δij

(2)

Reimers and Waldfogel (2023) show that this ordering by rank-independent expected utility

is optimal for consumers.

Platform Algorithm:

The platform algorithm ranks lotteries by the following index:

I ′ij = κ1Sπ(δij)− κ2Su

(
3∑

k=1

p(ck)ck

)
(3)

where κ1, κ2 are the weights on the consumer and the ”platform” objective respectively,

where Sπ(.) and Su(.) are min-max scalers: Su(x) = x 1−ωi

101−ωi
and Sπ(x) =

x
10
. The minimums

and maximums correspond to the profits and utilities in the case where the subject receives

the degenerate lottery (p1 = 1, p2 = 0, p3 = 0) and (p1 = 0, p1 = 0, p3 = 1) respectively.

Intuitively, these scaling functions are required, because otherwise the number that is as-

sociated with the utility of the subject could be much higher or lower than the number

associated with the platforms profit, scaled by their risk aversion. However, there is no

reason why a platform should disadvantage users with a given set of preferences more than
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others, and therefore the values are appropriately rescaled.

To give some intuition for how the two algorithms work, I plot iso-utility, iso-profit and iso-

index curves in the Marschak-Machina triangle (Marschak, 1974, Machina, 1982). The case

of a risk averse individual is displayed in figure 1. For a risk averse individual with a risk

preference parameter of ω = 0.7, the utility is increasing in the direction of the outcome 10$

with probability 100%. The iso-utility curves are steeply increasing, illustrating that the

individual is willing to accept a lottery with a much lower chance of the highest outcome of

10$ in order to decrease the probability of the worst outcome 0$. The iso-profit curves that

capture the objective of the platform are increasing in the direction of the outcome 0$ with

probability 100%. In this setting, there is no way for the ”platform” to gain anything, the

best it can do is to minimize its losses. The iso-profit curves are 45 degree lines, illustrating

that the platform is risk-neutral - all lotteries with equal expected value are equally costly

to the platform in expectation. The iso-index curves plot equal levels of the index I ′. The

index reaches its highest level at the point where the subject receives the outcome 5$ with

100% probability. This is because the subject benefits from lower risk - ensuring that the

probability of the worst outcome is close to 0 - which is costless for the platform to provide.

The figure 2 illustrates further that the interests of the platform and the subject are not

completely opposed. Consider a lottery at the intersection of the iso-index and iso-utility

curves in the Marschak-Machina triangle. The area shaded in green shows the lotteries that

are simultaneously preferred by the subject, but that are also going to be ranked higher than

the lottery at the intersection of the iso-index and iso-utility curve in the graph. The red-

shaded area marks the lotteries that would be ranked above the lottery at the intersection

of the iso-index and iso-utility curve, but for which the lottery at the intersection would be

preferred by the subject.

In a similar vein, figure 3 shows the iso-utility and iso-index curves for a risk seeking

individual with a risk preference of ωi = −2. While the utility is still increasing in the

direction of the lottery that pays the outcome 10$ with 100% probability, the slopes of

the iso-utility curves are now flatter than 45 degree lines, indicating that the risk-seeking

subject is willing to accept a higher probability of receiving the worst outcome of 0$ in
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(a) CRRA iso-utility curves with ω = 0.7 (b) Iso-profit curves

(c) Iso-index curves, ω = 0.7, κ1 = κ2 = 1

Figure 1: Iso-utility, Iso-profit, and Iso-index curves with ω = 0.7 (Risk-averse)
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p1

p3

×

Figure 2: Iso-utility and iso-index curves for the lottery (0.4,0.4,0.2) with ω = 0.7 (Risk-
averse)

order to slightly increase the probability of the best outcome, 10$. Combining this with

the the iso-profit curves that represent the objective of the platform, the index I ′ is now

increasing when the lotteries are further from the lottery that pays 5$ with probability

100%, exactly opposite to the risk aversion case. In order to create a symmetric choice

situation for risk seeking and risk averse individuals in the experiment, I constrain the

set of lotteries to lotteries where p1 ≤ 50% and p3 ≤ 50%. Figure 4 mirrors figure 2 in

illustrating the lotteries that are preferred/not preferred by the subject and the index I ′

criterion respectively.
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(a) CRRA iso-utility curves with ω = −2 (b) Iso-index curves, ω = −2, κ1 = κ2 = 1

Figure 3: Iso-utility, and Iso-index curves with ω = −2 (Risk-seeking)

p1

p3

×

Figure 4: Iso-utiltiy and iso-index curves for the lottery (0.4, 0.4, 0.2) with ω = −2 (Risk-
seeking)
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3 Experimental Design

The experiment features three kinds of tasks: a risk preference elicitation task, a choice

task, and a willingness-to-pay elicitation task.

The risk preference elicitation task is in the style of Johnson, Baillon, Bleichrodt, Li, van

Dolder and Wakker (2021). As shown in figure A9, subjects are presented with the prospect

of gaining either the outcome of a lottery that pays $10 or $0 with equal probability or re-

ceiving a sure but unknown monetary amount X, randomly drawn with uniform probability

between $0 and $10. Subjects are asked to declare a threshold such that they would prefer

receiving X if it is above the threshold, and they would prefer receiving the lottery if X is

below the threshold. The threshold of a risk neutral is $5, whereas the thresholds of risk

averse (risk seeking) individuals are lower (higher) than $5.

The central task of this experiment is the choice task, which subjects complete 30 times. A

screenshot of the choice task is shown in figure 5. It is designed to resemble choices from

ordered lists on online platforms. For each round of this task, subjects are asked to choose

from lists of three-outcome lotteries. The lotteries have been ordered by either the platform

or the expected utility algorithm as described in section 21. The algorithms also lotteries

in the sense that only the top 10 lotteries according to the algorithms ranking criterion

are visible to subject. These algorithms take into account the subjects risk aversion that

has been calculated using their choice in the first task and assuming constant relative risk

aversion2. The outcomes of all lotteries are 10$, 5$, and 0$, and the respective probabilities

are drawn to ensure that the probability of 10$ and 0$ does not exceed 50%. Subjects do not

know the properties of the algorithms, but they are aware of the different algorithms that

select and order the lotteries. Throughout the choice task, subjects see either ”Algorithm

1” or ”Algorithm 2” at the top of the page, colored green or blue (color is randomized across

individuals). They can thus learn through there repeated interactions whether algorithm 1

1The experiment uses 30 sets of 20 lotteries each with probabilities (p1 ≤ 0.5, p2 ≤ 1, p3 ≤ 0.5)
2Since platform algorithm does not produce an ordering in case the subject is risk neutral, risk neutral

subjects are randomly treated as either very slightly risk averse (ω = 0.01) or slightly risk seeking (ω =
−0.01).
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Figure 5: A screenshot of round 1 of the choice task for a risk-averse subject. The lotteries
are selected and ordered by the platform algorithm which ranks safe but low expected value
lotteries high. The subject sees that the lotteries in this round of the choice task are selected
and ordered by algorithm 1.

or algorithm 2 creates better recommendations for them.

Finally, I elicit subjects willingness-to-pay for one algorithm over the other. For this step,

I give subjects an endowment of $1. Using a slider, subjects can change the probability

that they will face either algorithm 1 or algorithm 2 in the next set of 10 choice rounds.

Choosing equal probability between the two algorithms (50% - 50%) is costless. Changing

the probabilities by 1%, i.e. to 49% - 51% costs $0.02. The cost increases linearly, so that

the cost of setting the probability to 1 to have either algorithm for the last 10 choice rounds

is equal to the full endowment - $1.
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Timing Description
t=1 Instructions

• Consent form and general Instructions about the experiment - figure A1, A2
• Instructions on the risk elicitation task - figure A3, A4
• Instructions on the lottery choice task - figure A5
• Instructions on the Willingness-to-pay (WTP) elicitation mechanism - figure
A6, A7

Start of the main experiment - figure A8

t=2 Risk preference elicitation task - figure A9
t=3 10 rounds of choice task - figure A11

Choice task with either platform or expected utility algorithm (in case of plat-
form algorithm, expected utility algorithm in the next set of 10 choice tasks
and vice-versa; order randomized).

t=4 Buffer Screen informing subjects of a change in the algorithm - figure A12
t=5 10 rounds of choice task - figure A13
t=6 Willingness to pay elicitation - figure A14, A15

• Subjects receive an endowment of 1$
• Subjects can choose the probabilities (x, 1− x) that they face the expected
utility algorithm or the platform algorithm respectively for the next set of 10
choice tasks.
• The cost of changing the probability is equal to p = $(x− 0.5)× 2

t=7 10 rounds of choice task
With either expected utility of platform algorithm based on a random draw
with the probabilities (x, 1-x).

t = 8 Survey - figure A16, A17
t = 9 Disclosure of the realization of the bonus payment, end of the experiment -

figure A18

Table 1: Timing of the experiment

3.1 Incentives

When multiple lotteries are paid out, the subjects might realize that risk is diversified and

exhibit higher risk appetite than in other situations (Azrieli, Chambers and Healy, 2018). I

minimize this problem by randomly selecting one part to reward. As suggested by Plott and

Zeiler (2005), subjects will be exposed to training and practice rounds with the elicitation

mechanism in an anonymous fashion. The practice rounds will however not be incentivized,
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as this is at odds with the recommendation of Azrieli et al. (2018) to select one round to

reward at random.

I divide the experiment into three parts, of which one is randomly selected for the bonus

payment with equal probability. The three parts are risk preference elicitation (t = 2), the

first 20 rounds of the choice task (t = 3, t = 4), and the willingness-to-pay elicitation task

and the final set of choice rounds (t = 5, t = 6), as outlined in table 1.

In case the randomly selected part is part 1, subjects get a bonus according to their choice.

In case the randomly drawn number X was above their threshold, they receive the X as

the bonus, otherwise they receive the outcome of the lottery that pays 10$ with probability

50% (and 0$ with probability 50%).

If the randomly selected part is part 2, I select 1 of the 20 rounds at random and the subject

gets the outcome of the lottery they chose in that round. For example, a subject may have

chosen the lottery [P(10$)=0.03, P(5$)=0.9, P(0$)=0.07] in the randomly selected round.

The outcome drawn based on these probabilities is the subjects bonus payoff.

Lastly, if the randomly selected part is part 3, I add the unspent endowment from the

willingness-to-pay elicitation to their bonus payoff. Furthermore, I draw one of the last 10

choice rounds at random, and the outcome drawn based on the probabilities of the lottery

that they chose in that round is added to the bonus payoff as well.

3.2 Hypotheses

The primitive data set consists of each participant’s choice in the risk-preference elicitation

task. Their choices in the 30 rounds of the choice task, as well as their elicited willingness-

to-pay. For the choice task, the dataset contains the full list of lotteries that the subject

was presented with in each round and their respective rank. I further compute the following

values: using the participant’s choice in the risk elicitation task, I compute their risk aversion

assuming a CRRA utility function. Using the data from the choice task, I compute the

average expected value of the chosen lotteries for each section of the experiment (t = 3,
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t = 4, t = 6) and the corresponding average expected utility using the computed coefficient

of risk aversion and assuming a CRRA utility function1.

The first set of hypotheses concern consumer behavior and outcomes when they are subject

to the two different algorithms. Since the goal of the variation between the two algorithms

is that one is more aligned with the interests of the consumer than the other, the general

hypothesis is that consumer outcomes are better when they are subject to the expected

utility algorithm. The second set of hypotheses concern willingness-to-pay. I assume that

willingness-to-pay for the expected utility algorithm is positive. I further assume that

subjects who have close to risk neutral risk preferences have a higher willingness-to-pay for

the expected utility algorithm that subjects that are very risk averse or very risk-seeking.

For the full set of hypotheses, as pre-registered using the AEA RCT Registry with the ID

AEARCTR-0014017, please refer to appendix ??.

4 Results

The sample contains 298 individuals that have completed three sets of choice rounds each.

For the analysis, the data therefore contains of 298 individuals, 894 sets of choice rounds

and 8940 choice rounds. Given that subjects have 10 lotteries available to them in each

choice rounds, the full dataset contains 89400 records, 1 chosen lottery for each choice round

and 9 non-chosen lotteries. Furthermore, subjects completed the experiment in 21 minutes

on average, and received an average bonus payment of $5.79 in addition to the completion

fee of $4 for a total average reward of $9.79 ($27.97 per hour).

Of the 298 individuals, 113 have made a choice in the risk elicitation task that is consistent

with risk-aversion, 66 have made a risk-neutral choice, and 119 have made a choice that is

consistent with risk-seeking preferences.

1I further compute an individual estimate of how the rank of a lottery affects the likelihood that a given
individual chooses the item. The results that use this measure are reported in appendix ??
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Figure 6: Distribution of the elicited risk-preferences parameter ω. 27 individuals with a
risk preference of < −1 are bottom coded.

4.1 Algorithms and consumer behavior

T-tests that comparing means of the average expected utility, average expected value, and

average rank of chosen lotteries are displayed in figures 8, 9, 10. Overall, the findings are

consistent with the hypothesis that subjects have better outcomes when they are faced with

the expected utility algorithm.

Subjects choose on average lotteries with lower expected utility when they are faced with

the platform algorithm than when they are faced with the expected utility algorithm. In

the graph, expected utility is normalized with respect to the CRRA utility of receiving 10$

for certain, taking into account their risk preference parameter ωi. Using a two-sided t-test,

the average expected utility with the platform algorithm and the expected utility algorithm

are significantly different at the 1% level.

Secondly, subjects choose on average lotteries with a lower expected payoff when they are

faced with the platform algorithm than when they are faced with the expected utility

algorithm. The average difference is equivalent to $0.72, a difference of around 13%. Using
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Figure 7: Share of choices with each rank, 1-10

a two-sided t-test, the average expected value with the platform algorithm and the expected

utility algorithm are significantly different at the 1% level.

Lastly, subjects choose on average lotteries with a higher rank when they are faced with the

platform algorithm than when they are faced with the expected utility algorithm. Using a

two-sided t-test, the average expected value with the platform algorithm and the expected

utility algorithm are significantly different at the 1% level. The difference in the average

rank of chosen lotteries between the platform algorithm and the expected utility algorithm

is 1.86. However, the average rank of lotteries chosen if subjects face the expected utility

algorithm is somewhat surprising - with the expected utility algorithm, the average rank

is 3.08, however if the subjects risk aversion is correctly elicited in the first task, subjects

should always prefer the choice ranked first when faced with the expected utility algorithm.

There are several potential explanation for this. Firstly, subjects might misunderstand

the risk elicitation task. Secondly, the risk preferences of subjects might not be stable

throughout the experiment. Third, subjects may make mistakes when comparing lotteries.
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Figure 8: Difference in average expected utility between choices made facing the platform
algorithm and choices made facing the expected utility algorithm.

Fourth, subjects may not search the list of lotteries from top to bottom. Fifth, the assumed

CRRA utility function might not reflect the actual preferences of subjects.

All in all, these results confirm the hypothesis that subjects have better outcomes when

they are faced with the expected utility algorithm. This means that the experiment suc-

cessfully induced the desired variation, that makes the abstract lottery choice comparable

to consumer choices on online marketplaces. Firstly, subjects choose lotteries with a lower

average expected value when they are faced with the platform algorithm. This means, that

in the marketplace context, it is potentially profitable for the platform to use such an algo-

rithm. Secondly, subjects chose lotteries with a higher ranked when faced with the platform

algorithm. This suggests, that subjects understood some of the important differences be-

tween algorithms, namely that the best choice is more likely to be on top of the list when

subjects face the expected utility algorithm.
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Figure 9: Difference in average expected value between chosen lotteries in the platform
algorithm condition and chosen lotteries in the expected utility algorithm condition.

To test the hypothesis that subjects that are close to risk neutral have worse outcomes than

subjects that are either very risk averse or risk neutral, I estimate the following regression,

where ω denotes the elicited coefficient of risk aversion1:

ȳis = α + β1ω + β2ω
2 + 1(As = Platform)[θ0 + θ1ω + θ2ω

2]

The regressions show that across outcomes, risk neutral subjects fare worse when they are

faced with the platform algorithm than their risk-averse or risk-seeing counterparts. For

both expected utility and expected value, the interaction term of the platform algorithm

dummy and the squared risk aversion coefficient is positive, indicating that risk-averse or

risk-seeking subjects have higher payoffs than risk-neutral subjects. Consequentially, risk-

averse and risk-seeking subjects also choose lotteries with a lower rank when faced with

127 individuals (81 observations) with and elicited risk aversion ωi < −1 are bottom-coded such that
ωi = −1
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Figure 10: Difference in average rank between chosen lotteries in the platform algorithm
condition and chosen lotteries in the expected utility algorithm condition.

the platform algorithm, indicating that the platform algorithm is indeed more aligned with

their preferences than the ones of risk-neutral subjects.

4.2 Willingness-to-pay

In the following section, I study the elicited willingness-to-pay for the expected utility

algorithm. I elicit willingness-to-pay by letting subjects choose the probability with which

they face either the expected utility or the platform algorithm for the last set of 10 choice

rounds. Subjects receive an endowment of $1. Choosing equal probability between the two

algorithms is costless, meaning that if this section of the experiment is selected for their

final payoff, the subjects get $1 in addition to the outcome of a randomly selected lottery

that they chose in the final set of 10 choice rounds. Choosing 100% probability for either the

expected utility or the platform algorithm costs the full endowment of $1. For intermediate

probabilities, the cost increases linearly by $0.02 for each percentage point.
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(1) (2) (3)
Rank Expected Utility Expected Value

ω 0.381 0.170*** -0.826***
(0.313) (0.0112) (0.0677)

ω2 0.567 0.0357** -0.608***
(0.472) (0.0175) (0.115)

Platform algorithm 2.190*** -0.0619*** -0.722***
(0.226) (0.00466) (0.0426)

Platform algorithm × ω -3.015*** 0.0651*** 0.742***
(0.448) (0.0125) (0.0767)

Platform algorithm × ω2 -2.090*** 0.0983*** 0.530***
(0.674) (0.0195) (0.129)

Constant 3.058*** 0.606*** 6.034***
(0.142) (0.00400) (0.0369)

Observations 596 596 596
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 2: Main outcome regressions

The distribution of elicited willingness to pay is plotted in figure 11. The willingness-to-pay

is coded to lie between -1 and 1, where -1 is a willingness to pay of $1 for the platform

algorithm, and 1 is a willingness to pay of $1 for the expected utility algorithm. The

graph shows that the distribution has a large mass point at 0. 60 subjects selected equal

probability in the willingness to pay elicitation, corresponding to a willingness to pay of 0.

150 subjects selected a positive willingness to pay, and 23 subjects selected a willingness

to pay of $1 for the expected utility algorithm. 88 subjects selected a negative willingness

to pay, meaning they are willing to give up part of their endowment in order to increase

the probability that they face the platform algorithm in the next set of choice rounds. The

average willingness-to-pay is $0.13.

In order to study how the willingness-to-pay is affected by risk preference and the individual
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Figure 11: Distribution of elicited willingness-to-pay

benefit from having the expected utility algorithm, I create a measure of the average benefit

that a subject derives from having the expected utility algorithm compared to the platform

algorithm. I divide the benefit into two parts: a monetary part that is due to choosing

better lotteries when faced with the expected utility algorithm, and a part that captures

the smaller cognitive costs of being faced with the expected utility algorithm rather than

with the platform algorithm.

To calculate the individual expected utility algorithm benefit, I take the individual difference

in average value of lotteries chosen when this subject is faced with the expected utility

algorithm compared to when they are faced with the platform algorithm ∆πi = π̄P
i − π̄EU

i ,

where π̄P
i , π̄

EU
i are the average expected values of lotteries that subject i chose when faced

with the platform or the expected utility algorithm. I proxy the cognitive cost difference by

the individual average difference in time spent on the page, ∆si = s̄Pi − s̄EU
i , where s̄Pi , s̄

EU
i

are the average number of seconds spent on a choice page when faced with the platform

algorithm or the expected utility algorithm respectively. I scale this time difference by the

10 rounds that comprise the last set of choice rounds and assume that subjects have an
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opportunity cost of 20$ (the average payoff of this experiment is equivalent to 27.97$). The

total individual benefit of having the expected utility algorithm rather than the platform

algorithm therefore is:

Bi = ∆πi +
10×∆si
60× 60

I then estimate the regression:

WTPi = α + β1Bi + β2ωi + β3ω
2
i + ϵ

Willingness-to-pay P-Value Confidence Interval

B 0.067** 0.033 0.005 - 0.128
ω -0.017*** 0.000 -0.021 - -0.013
ω2 -0.000*** 0.000 -0.000 - -0.000
Constant 0.090** 0.014 0.019 - 0.162

Observations 298
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3: Willingness-to-pay regression

The results of the regression of willingness to pay on Bi, as well as ω and ω2 are displayed

in table A5. The results suggest, that a higher individual expected gain Bi from having the

expected utility algorithm positively correlates with a higher willingness to pay. However,

the increase in willingness to pay is small compared to the expected gain - an increase in the

expected gain of 1$ increases willingness to pay only by ∼ 0.07$. The coefficient for ω2 is a

precisely estimated zero, suggesting that subjects with extreme risk preferences are not more

or less willing to pay in order to have the expected utility algorithm, even though compared

to risk-neutral subjects, their preferences are more aligned with the platform algorithm.

In this regression, the coefficient for the risk preference parameter ω is also negative and
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significant at the 1% level. This may be an artifact of the willingness to pay elicitation

method, where subjects are asked to give up part of an endowment in order to change the

probability to have the expected utility algorithm for the next set of choice rounds. Risk

averse individuals may simply be less willing to give up the sure endowment, and therefore

have a lower willingness to pay. Extreme values of risk aversion seem to have at most a very

small effect on willingness to pay. The regression reveals that subjects willingness-to-pay

increases with the individual expected gain Bi, but by a comparatively small amount.

5 Conclusion

In this paper, I develop an online experiment in order to study the effect of recommendation

algorithms on consumer choices. The experiment consists of two parts: a first, standard

risk elicitation task, and a choice task where the subjects are asked to choose from lists

of lotteries, where the lists have been selected and ordered by the different recommenda-

tion algorithms. This way of designing the experiment has the important advantage, that

no prior information about the characteristics of the subjects, or any previous choice data

is necessary in order to inform the recommendation algorithms. The recommendation al-

gorithms can simply use the elicited risk preference and with some assumption use this

parameter to estimate the expected utility for all lotteries. The expected utility can than

be combined with other information in order to create an index according to which lotteries

are selected and ranked. I then use this experimental framework to study the question of

whether subjects have a positive willingness to pay for a better recommendation algorithm.

It is important to point out, that this experimental framework can in principle be applied to

study many other questions related to recommendation systems, including the role of com-

plexity, what happens when information about the algorithm is disclosed, and how subjects

search when they are faced with recommendation systems.

Regarding the willingness to pay for the better (expected utility) algorithm, I find that it is

positive on average. Individuals that derive a higher benefit from having the expected utility
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algorithm have a higher willingness to pay for it - however, subjects are only willing to pay

$0.07 for an additional $1 of expected gain from having the better algorithm. Overall, the

results from this experiment suggest, that from a regulatory perspective, giving consumers

the option between different recommendation systems may not be ideal, since subjects seem

to underestimate the benefit from having the better recommendation algorithm. However,

it could be viable for platform businesses to offer better recommendations for a fee, or to

offer the choice of different recommendation systems in order to differentiate themselves

from competitors1. Future studies could focus on the role of information that subjects have

when choosing between algorithms. In this experiment, the only information that helps

subjects in their choice comes from their experience with the two algorithms. It would be

interesting how choices vary with additional information about the algorithm behavior, and

whether subjects are willing to incur costs to learn this information.
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Safe payoff threshold r

0.0 0.998
0.5 0.769
1.0 0.699
1.5 0.635
2.0 0.569
2.5 0.500
3.0 0.424
3.5 0.340
4.0 0.244
4.5 0.132
5.0 -0.000
5.5 -0.159
6.0 -0.357
6.5 -0.609
7.0 -0.943
7.5 -1.409
8.0 -2.106
8.5 -3.265
9.0 -5.579
9.5 -12.513
10.0 -302.090

Table A1: r-values for chosen safe payoff thresholds

A.1.1 Experiment Design
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Figure A1: Screenshot - ConsentForm
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Figure A2: Screenshot - Tutorial Introduction

Figure A3: Screenshot - Tutorial - Risk Preference Elicitation
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Figure A4: Screenshot - Tutorial - Risk Preference Elicitation Result

Figure A5: Screenshot - Tutorial - List Choice
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Figure A6: Screenshot - Tutorial - Slider Choice

Figure A7: Screenshot - Tutorial - Slider Choice Result
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Figure A8: Screenshot - Experiment Introduction

Figure A9: Screenshot - Risk preference elicitation stage



A.1 Appendix 40

Figure A10: Screenshot - Introduction choice experiment

A.1.2 Hypotheses

A.1.2.1 Algorithms and consumer behavior

Hypothesis 1: Subjects choose lotteries with lower expected utility on average when facing

the platform algorithm compared to when they face the expected utility algorithm.

Hypothesis 2: Subjects choose lotteries with lower expected value on average when facing

the platform algorithm compared to when they face the expected utility algorithm.

Hypothesis 3: Subjects choose lotteries that are further down the list on average when

facing the platform algorithm compared to when they face the expected utility algorithm.

Hypothesis 4: Subjects with high search costs are more negatively effected by the platform

algorithm than subjects with low search costs.

Hypothesis 5: Subjects that are risk neutral or close to risk-neutral are more negatively

effected by the platform algorithm than subjects with high risk aversion or high preference

for risk.
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Figure A11: Screenshot - Choice screen where lotteries are selected and ordered by algorithm
1 (Platform algorithm)

Figure A12: Screenshot - Buffer Screen between rounds 10 and 11
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Figure A13: Screenshot - Choice screen where lotteries are selected and ordered by algorithm
2 (Expected utility algorithm)
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Figure A14: Screenshot - Choice between algorithms
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Figure A15: Screenshot - Choice of probability of algorithm 1 or algorithm 2 for the last 10
choice rounds
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Figure A16: Screenshot - Survey
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Figure A17: Screenshot - Survey open questions

Hypothesis 6: Subjects have a positive willingness-to-pay for the expected utility algorithm.

Hypothesis 7: Subjects with high search costs have a higher willingness-to-pay for the

expected utility algorithm than subjects with low search costs.

Hypothesis 8: Subjects that are risk neutral or close to risk neutral have a higher willingness-

to-pay for the expected utility algorithm than subjects with high risk aversion or high pref-

erence for risk.



A.1 Appendix 47

Figure A18: Screenshot - End of the experiment and payment screen
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Figure A19: Screenshot - Attention check

Figure A20: Screenshot - Attention check fail



A.1 Appendix 49

A.1.3 Additional Results

(1) (2)
Rank Rank

βEU 2.333
(1.901)

γ 0.0706
(0.0503)

σ2
γ 0.251***

(0.0312)

σ2
βEU 288.0***

(38.96)

σ2
α 107.3***

(14.03)

cov(βEU ,α) -173.2***
(23.13)

α -3.918***
(1.074)

Observations 24,016 24,016
Number of groups 298 298

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A2: Random coefficients logit results

A.1.4 Results with Estimated Rank Disutility

In order to estimate individual level rank disutility, I estimate a random effects logit model

(Train, 2009). The random effects logit allows me to recover an individual-level estimate of

the rank disutility term γi. It is important to note, that this approach assumes that each

subject considers all lotteries, whereas in both the experimental, as well as the ecommerce

platform context, subjects typically do not consider all options. From the experiment I

only have information about the lotteries that were chosen, and not all the lotteries that
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(1) (2)
Expected Utility Expected Value

Rank -0.0217*** -0.151***
(0.000901) (0.0147)

ω 0.178*** -0.768***
(0.00761) (0.0713)

ω2 0.0481*** -0.522***
(0.0112) (0.102)

Platform algorithm -0.141*** -1.559***
(0.00548) (0.0600)

platform rank 0.0241*** 0.223***
(0.00113) (0.0154)

Platform algorithm × ω 0.0631*** 0.873***
(0.00960) (0.0788)

Platform algorithm × ω2 0.0896*** 0.553***
(0.0143) (0.113)

Constant 0.672*** 6.497***
(0.00335) (0.0527)

Observations 596 596
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A3: Regressions of main outcomes on rank and controls

were actually considered. This means that rank disutility cannot be readily interpreted as

search costs. As an example, consider a subject A that has high search costs and stops

after searching the first two options. They then always choose the second option. Subject

B has low search costs, and searches all the options. However, after considering all the

options they always choose the first ranked option. In this case, I would estimate a lower

rank disutility for subject A than for subject B, γA < γB, even though subject A has

higher actual search costs. As Fong et al. (2024) point out, beliefs of subjects about the

recommendation system play an important role, and not accounting for them can lead to

the overestimation of search costs. Furthermore, it could be, that subjects are not searching
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through the list of lotteries from top to bottom1. Despite these concerns, I assume that

subjects mostly search through lists of lotteries from top to bottom (shown in a different

experimental context by Caplin et al. (2011)) and that the rank disutility that I estimate

is correlated to actual search costs.

Contrary to the utility function in equation 1, I estimate a more flexible model of the form:

uij = αi + βEU
i δij + γirj + ξj + ϵij

In comparison to the utility function in 1, this utility admits for a random intercept and a

random coefficient for expected utility. The additional random coefficients for the intercept

and expected utility have been introduced in order to capture some of the deviations from

the expected optimal behavior that is suggested by the fact that subjects choose lotteries

with an average rank substantially higher than 1 when faced with the expected utility

algorithm. The random coefficient for expected utility is introduced to capture the fact, that

the ability to cognitively judge and compare lotteries may be heterogeneous in the subject

population. To get estimates of γi that are not scaled by the individual specific risk aversion

ωi, I normalize the rank independent utility δij with respect to the utility of receiving a

sure payoff of 10$. The estimation includes lottery fixed effects in order to capture lottery

specific variation that is common across individuals, in 1 denoted as ξj. Lastly, the model has

been estimated using only data from choice rounds where the subjects faced the platform

algorithm. Theoretically, if subjects behaved as predicted by the conceptual framework,

there should be little variation in the rank variable when subjects face the expected utility

algorithm - most subjects should choose the lottery ranked 1 (i.e. the lottery with the

highest expected utility, based on the risk aversion that is consistent with their choice in

the risk elicitation task) most of the time. Data from the third section of the experiment

is also excluded in order to avoid selection concerns. This leaves 29800 records for the

estimation of the random coefficients logit model. 5784 records where discarded during

1To get a more precise measure of search costs, the experiment could be adapted to record which options
were considered by the subject, i.e. by forcing subjects to click on options to reveal information about the
lotteries.



A.1 Appendix 52

the estimation process, because the corresponding lotteries are never chosen, and therefore

the corresponding fixed effects cannot be estimated. The results of the random effects

logit model are displayed in the appendix in table A2. The rank disutility parameter is

not significant, however, estimate of the variance is highly significant, indicating that rank

disutility is heterogeneous across individuals. I obtain individual estimates for the deviation

of individual rank disutility from the mean ∆γi and obtain an individual specific estimate

of rank disutility: γi = γ̄ +∆γi.

(1) (2) (3)
Rank Expected Utility Expected Value

γ -0.842*** 0.0235*** 0.570***
(0.246) (0.00564) (0.0536)

ω 0.0101 0.180*** -0.575***
(0.370) (0.0118) (0.0676)

ω2 0.380 0.0409** -0.481***
(0.504) (0.0177) (0.0997)

Platform algorithm 1.875*** -0.0613*** -0.711***
(0.146) (0.00442) (0.0360)

Platform algorithm × γ 5.401*** -0.0112* -0.192***
(0.264) (0.00654) (0.0568)

Platform algorithm × ω -0.636* 0.0602*** 0.657***
(0.386) (0.0131) (0.0747)

Platform algorithm × ω2 -0.891* 0.0958*** 0.487***
(0.528) (0.0199) (0.109)

Constant 3.107*** 0.604*** 6.001***
(0.137) (0.00380) (0.0321)

Observations 596 596 596
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

27 individuals (81 observations) with and elicited risk aversion ωi < −1
are bottom coded to be ωi = −1

Table A4: Main outcome regressions
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(1) (2)
Willingness-to-pay Willingness-to-pay

γ 0.157**
(0.0639)

ω -0.0197 -0.0167***
(0.0886) (0.00212)

ω2 -0.0276 -5.85e-05***
(0.128) (7.65e-06)

Bi 0.0666**
(0.0311)

Constant 0.131*** 0.0904**
(0.0371) (0.0364)

Observations 298 298
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

27 individuals with and elicited risk aversion ωi < −1
are bottom coded to be ωi = −1

Table A5: Willingness-to-pay regressions
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